

6500⁺
Objective Solved
Questions

Volume-1

Network Theory

MCQ

ELECTRICAL ENGINEERING

Topic Wise Objective Question & Answer with Solution

Topic Wise Presentation | Throughly Revised & Updated

Also Useful for

State Engineering Service Examinations,
Public Sector Examination
&
Other Competitive Examinations.

EA-Publications
ENGINEERS ACADEMY PUBLICATIONS

Publisher and Distributor

Engineers Academy Publications

100-102, Ram Nagar, Bambala Puliya, Toll Tax,
Tonk Road, Pratap Nagar, Jaipur (Rajasthan)-302033
E-Mail : engineers.academy.india@gmail.com

All Rights Reserved :

This book or part thereof cannot be translated or reproduced in any form (except for review or criticism) without the written permission from the Publishers.

ISBN : 978-93-93531-74-2

First Edition : 2025

Without prior written permission of publisher and author, no person/publisher/institute should use full part of the text/design/question/material of the book. If any body/publisher/institute is found in default legal action will be taken accordingly.

Price : ₹ 600.00

Although every effort has been made to avoid mistakes and omissions, there may be possibility some mistakes been left inadvertently. This book is released with the understanding that neither author nor publisher will be responsible in any manner for mistakes/permissions in the book. Dispute, if any, shall be subject to Jaipur (Rajasthan) Jurisdiction only.

DIRECTOR'S *Message*

To reach heights one must start climbing and if the journey is difficult then perseverance is the key to success. As a teacher we have realized over past years that success in any competitive exam requires hard work and proper guidance. **Engineers Academy** with its unique teaching methodologies has always proved that we meet the expectations of thousands of students and parents to make their dreams come true. With changing patterns, we have adapted ourselves to deliver the best and ensure better results.

This book has been organized and executed with a lot of care, dedication and passion for lucidity. A conscious attempt has been made to simplify the concepts to facilitate better understanding of the subject.

Engineers Academy has many successful stories of students who secured All India Rank in ESE, GATE, PSUs and JEn. Now we invite you to become a part of Engineers Academy to explore and achieve ultimate goal of your life. We promise to provide you quality guidance with competitive environment which is far advanced and ahead than the reach of other institution.

We would feel satisfied if the book meets the needs of the students for whom it is meant.

Lastly, we are thankful to all the engineers, authors whose work has been the source of enlightenment, inspiration and guidance in presenting this book.

It is hoped that the book in its new form will enjoy its ever increasing popularity.

Regards

Dr. Pankaj Goyal

Preface

This book has been written to meet the growing requirements of candidates appearing for BSNL, DRDO, ISRO, BARC, ECIL, TTA, RRB-JE, State and Public Sector Engineering Examinations. Though every candidate has ability to succeed but competitive environment, in-depth knowledge, quality guidance, time management and good source of study is required to achieve goals.

This book includes Multiple Choice Questions (MCQ) which works as a mock exam practice for the reader. Questions of all the subject have been organized in systematic, concepts oriented and error less manner so that it become easy and interesting for even a beginner to understand. It is a very convenient book and must be solved by candidate aiming for competitive exams.

After solving this booklet students can feel encouraged and develop confidence to attempt each and every type of numerical as well as theoretical problems. Each problems explains solving approach so that at the end, so the reader is well equipped to be able to apply any type of problem solving requirement and distinctly choose one strategy or type from the other.

We hope this book will be proved an important tool to succeed in BSNL, DRDO, ISRO, BARC, ECIL, TTA, RRB-JE, State and Public Sector Engineering Examinations.

It is earnestly hoped that with the extensive additions and revisions, the present edition will facilitate the students not only in preparing themselves for competitive examinations but also in preparing for their regular examinations and prove more useful to the students than the earlier editions.

Even though, enough readings were given for correcting the error and printing mistakes, due to human tendency there could be some minor types in the book. If any such types found, they will be highly appreciated and incorporated in the next edition. Also, please provide your valuable suggestions at : engineers.academy.india@gmail.com

Wish you all the best. Have a nice reading.

**Team of
Engineers Academy Publications**

CONTENTS

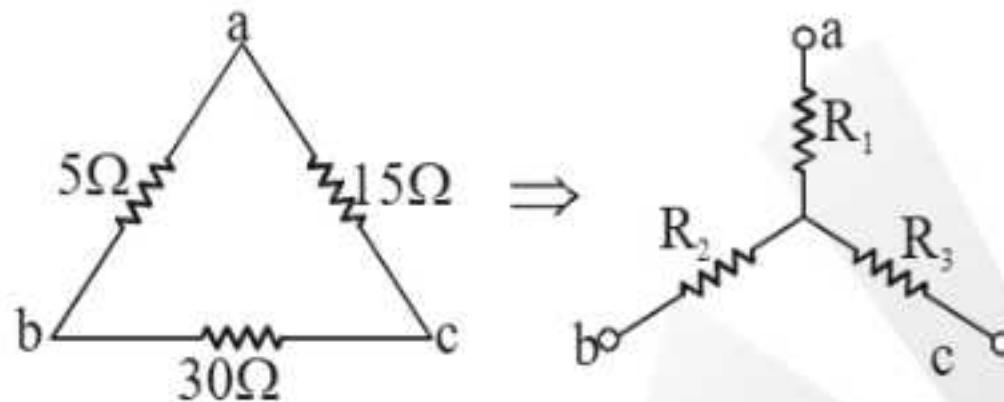
S.No.	TOPIC	Page No.
1.	Network Theory	03 – 258

UNIT-I

NETWORK THEORY

1. Basics of Circuit and Circuit Law	03 – 70
2. KVL and KCL	71 – 106
3. Network Theorem	107 – 133
4. AC Circuits and Resonance	134 – 190
5. Transient Response	191 – 202
6. Magnetic Coupled Circuits	203 – 221
7. Cell & Battery	222 – 227
8. Miscellaneous	228 – 258

ENGINEERS ACADEMY
Your GATEway to Professional Excellence
IES • GATE • PSUs • JTO • IAS • NET


BASICS OF CIRCUIT AND CIRCUIT LAW

CHAPTER

1

OBJECTIVE QUESTIONS

1. A delta connected network with its Y-equivalent is shown in figure. The resistances R_1 , R_2 and R_3 (in ohms) are respectively

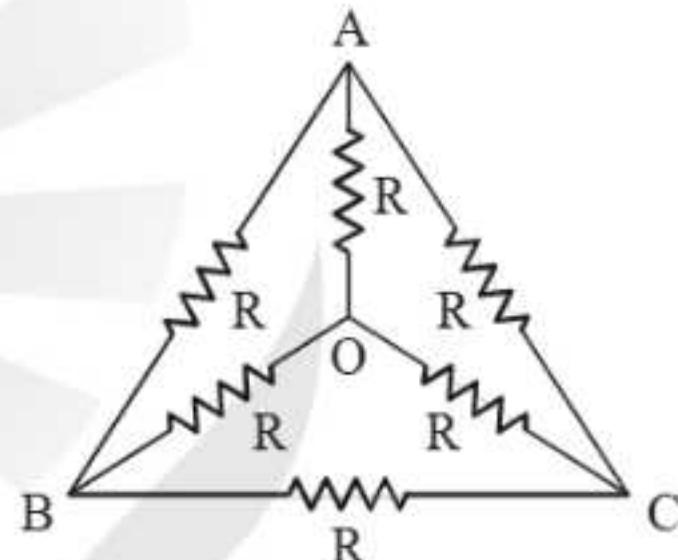
- (a) 1.5, 3 and 9 (b) 3, 9 and 1.5
 (c) 9, 3 and 1.5 (d) 3, 1.5 and 9

2. A network contains linear resistors and ideal voltage sources. If values of all the resistors are doubled then the voltage across each resistor is

- (a) Halved
 (b) Doubled
 (c) Increased by four times
 (d) Not changed

3. A 3 H inductor has 2000 turns. How many turns must be added to increase the inductance to 5H?

- (a) 1000 turns (b) 2500 turns
 (c) 2582 turns (d) 582 turns


4. An electric circuit with 10 branches and 7 nodes will have

- (a) 3 loop equations
 (b) 4 loop equations
 (c) 7 loop equations
 (d) 10 loop equations

5. The response of network is $i(t) = Kt e^{-\alpha t}$ for $t \geq 0$ where α is real positive. The value of 't' at which the $i(t)$ will become maximum, is

- (a) α (b) 2α
 (c) $\frac{1}{\alpha}$ (d) α^2

6. The effective resistance between the terminals A and B in the circuit shown in the figure is

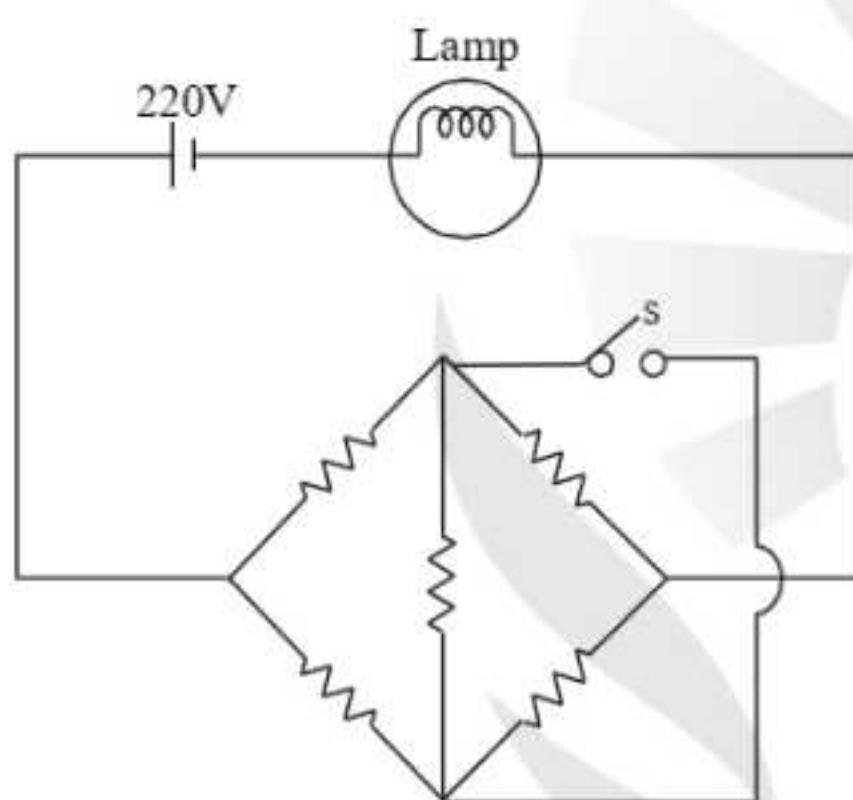
- (a) R (b) $R-1$
 (c) $\frac{R}{2}$ (d) $\frac{6}{11}R$

7. If the length of a wire of resistance R is uniformly stretched to n times its original value, its new resistance is

- (a) nR (b) $\frac{R}{n}$
 (c) n^2R (d) $\frac{R}{n^2}$

8. Two wires A and B of the same material and length L and $2L$ have radius r and $2r$ respectively. The ratio of their specific resistance will be

- (a) 1 : 1 (b) 2 : 1
 (c) 1 : 4 (d) 1 : 8


9. Two incandescent light bulbs of 40 W and 60 W rating are connected in series across the mains. Then

- (a) The bulbs together consume 100 W
 (b) The bulbs together consume 50 W
 (c) The 60 W bulb glows brighter
 (d) The 40 W bulb glows brighter

10. Twelve $1\ \Omega$ resistances are used as edges to form a cube. The resistance between the two diagonally opposite corners of the cube is

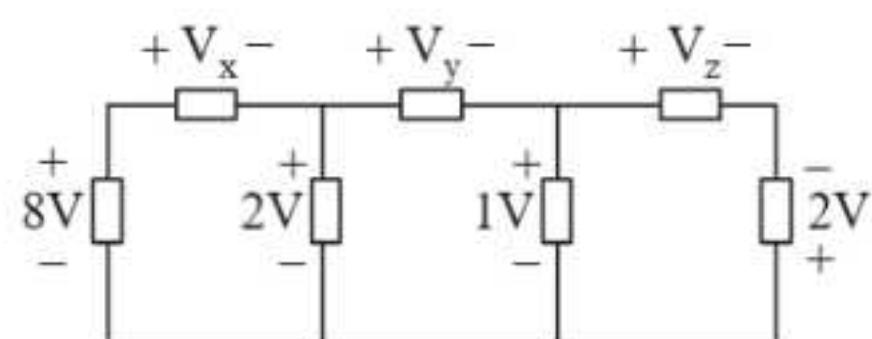
- (a) $\frac{5}{6}\ \Omega$ (b) $1\ \Omega$ (c) $\frac{6}{5}\ \Omega$ (d) $\frac{3}{2}\ \Omega$

11. All resistance in the given circuit are at $R\ \Omega$ each. The switch is initially open. What happens to the lamp's intensity when the switch is closed?

- (a) Increases
 (b) Decreases
 (c) Remains the same
 (d) Depends on the value of R

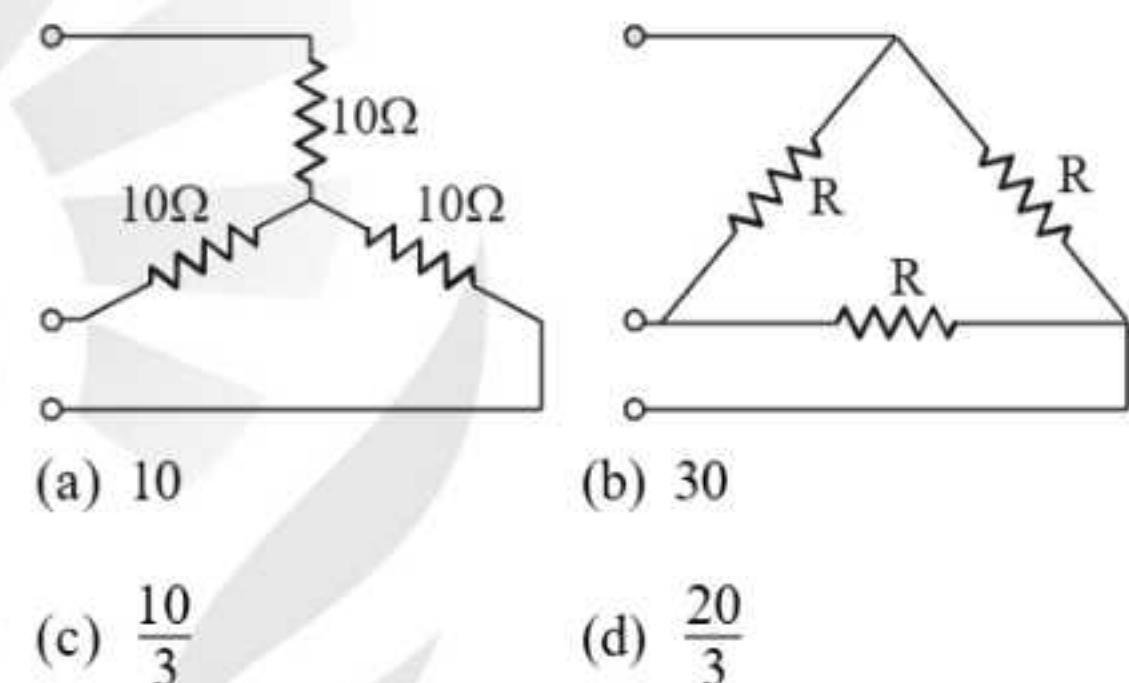
12. If each branch of a delta circuit has impedance $\sqrt{3} Z$, then each branch of equivalent star circuit has impedance would be

- (a) $\frac{Z}{\sqrt{3}}$ (b) Z
 (c) $2\sqrt{3} Z$ (d) $\frac{Z}{3}$


13. The dual of parallel RC circuit is a
 (a) Series RC circuit (b) Series RL circuit
 (c) Parallel RC circuit (d) Parallel RL circuit

14. Two resistances are connected in parallel and each dissipates 40 W. The total power supplied by the source is equals to

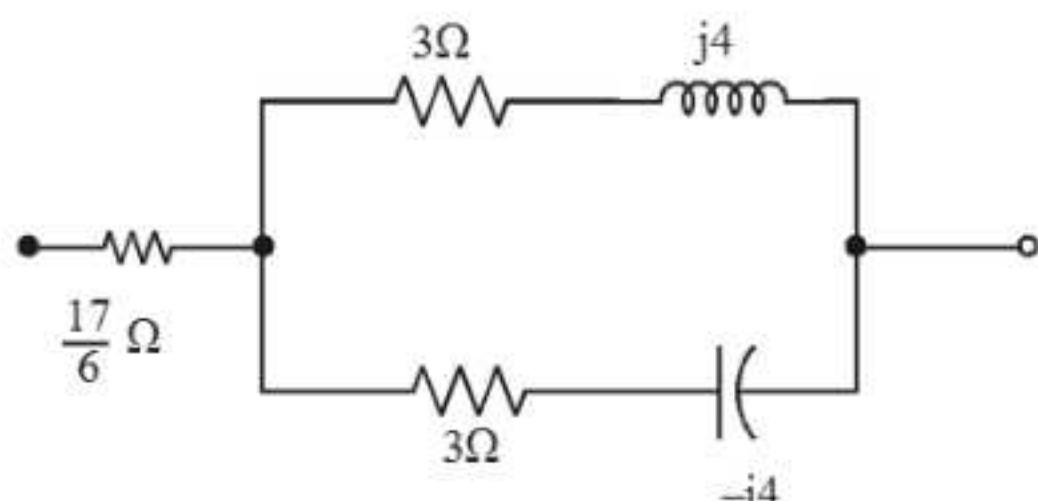
- (a) 80 W (b) 40 W
 (c) 160 W (d) 20 W


[TNPSC AE - 2018]

15. The value of V_x , V_y and V_z in figure shown are

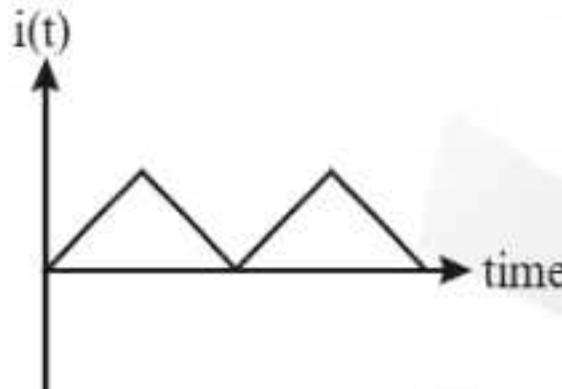
- (a) -6, 3, -3 (b) -6, -3, 1
 (c) 6, 3, 3 (d) 6, 1, 3

16. Star connected load is shown in the figure. The equivalent delta connection has a value of R in Ω is

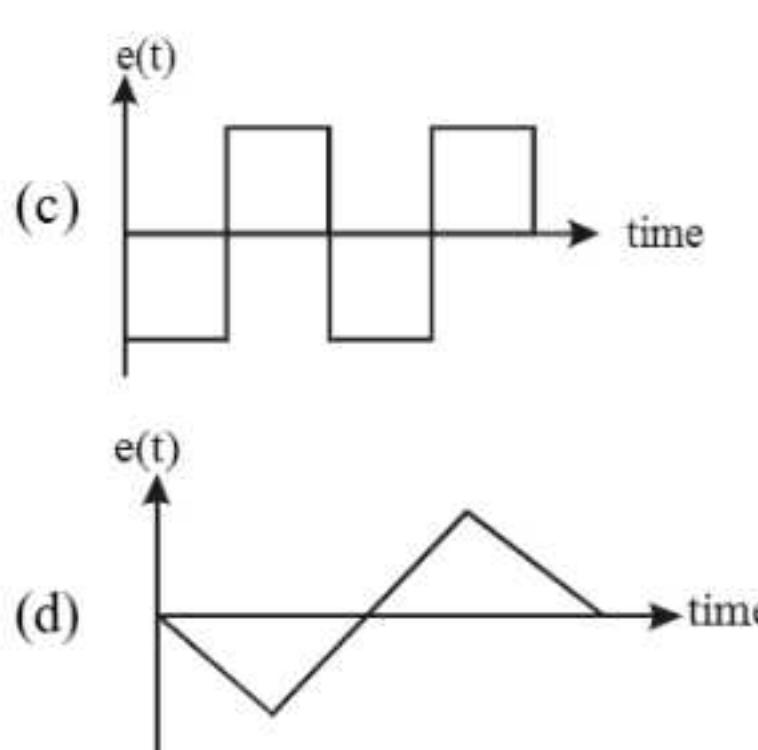
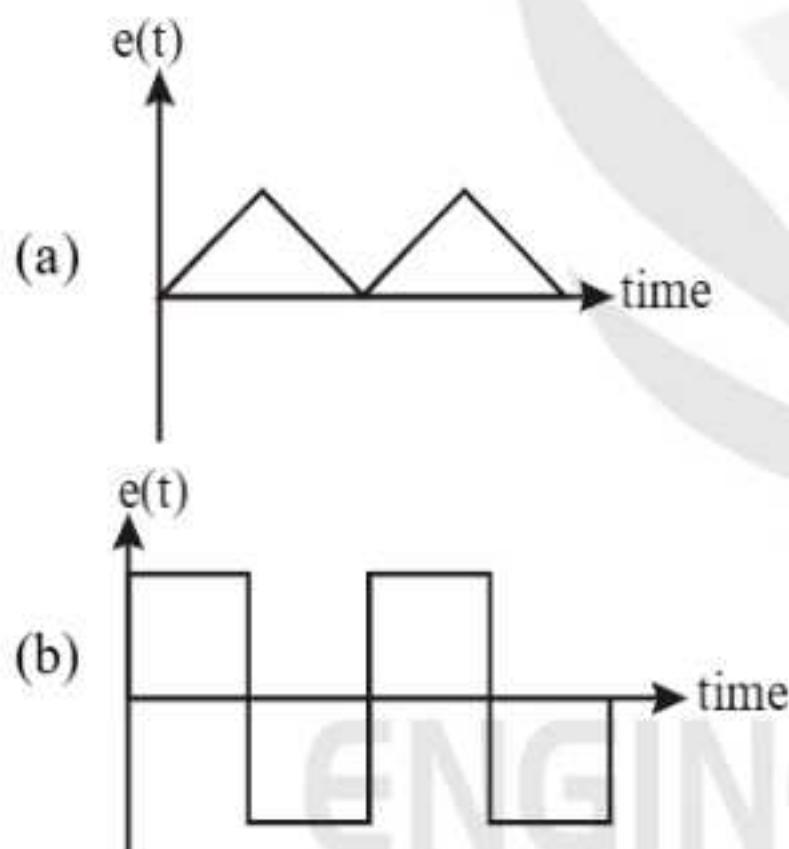


- (a) 10 (b) 30
 (c) $\frac{10}{3}$ (d) $\frac{20}{3}$

17. A lamp rated at 10 watt, 50 volts is proposed to be used in 110 volts, system. The wattage and resistance of the resistor to be connected in series with the lamp should be

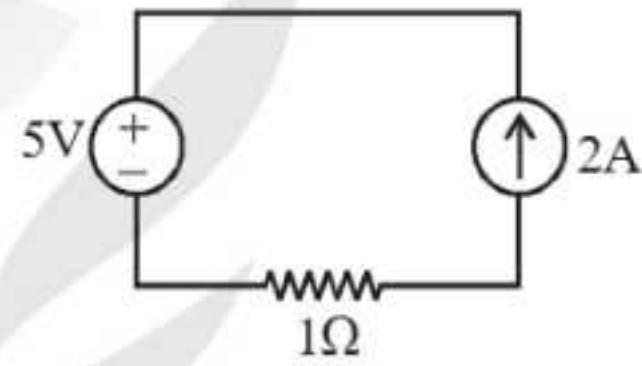

- (a) 15 W, 350 Ω (b) 10 W, 250 Ω
 (c) 12 W, 300 Ω (d) 15 W, 250 Ω

18. For the circuit shown below the total impedance is

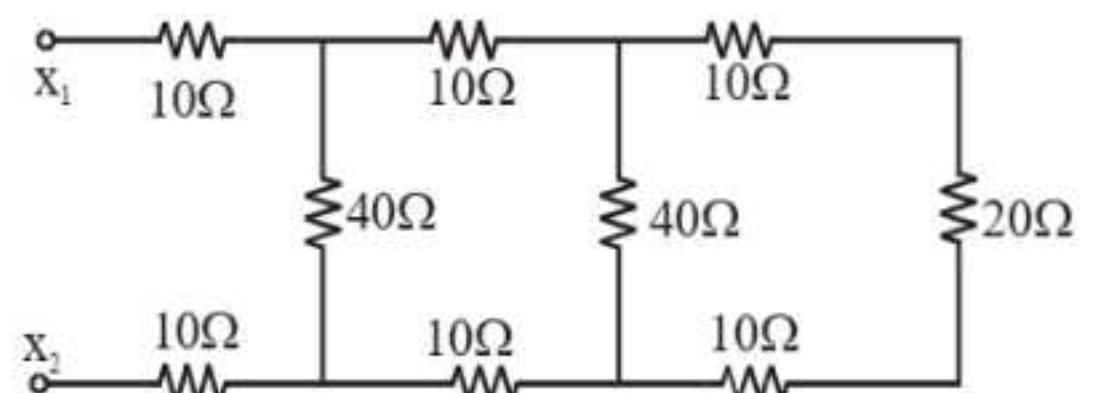



- (a) $(7 + j0)$ (b) $(5 + j0)$
 (c) $(0 + j8)$ (d) $(7 + j10)$

19. **Assertion (A):** Two wires of same length with different cross sectional areas are connected in series. The heat produced by the current is more in the thicker wire.
- Reason (R):** The thicker wire has low resistance.
- Both A and R are true and R is the correct explanation of A
 - Both A and R are true but R is NOT the correct explanation of A
 - A is true but R is false
 - A is false but R is true.
20. What is the power absorbed by a 3-phase load?
- $3 V_L I_L \cos \phi$
 - $\sqrt{3} V_L I_L \cos \phi$
 - $3 V_L I_L \sin \phi$
 - $\sqrt{3} V_L I_L \tan \phi$
21. The waveform of current flowing in a pure inductor is shown in the given figure.



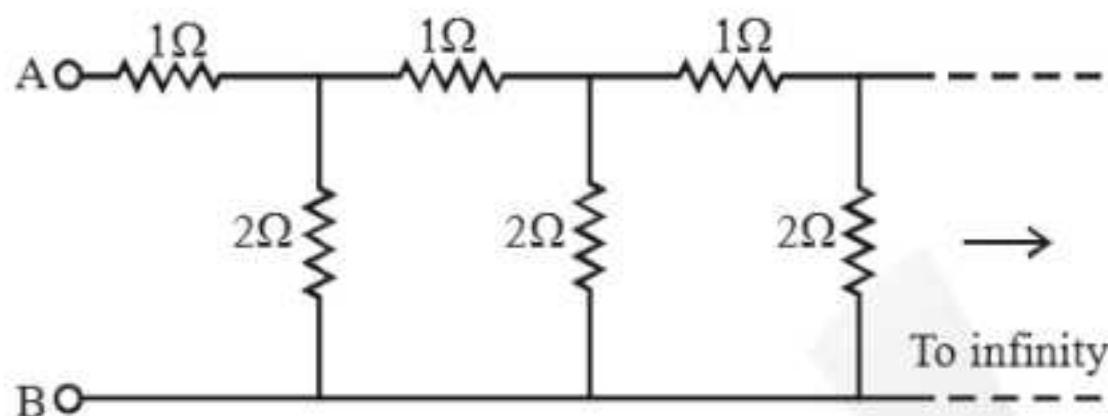
The wave form of the induced voltage in the inductor will be.


22. In a balanced delta connected resistive load when one resistor is open-circuited, then the power drawn by the load would be
- Is reduced by $\frac{1}{3}$
 - Is increased by $\frac{1}{3}$
 - Remains same
 - Is reduced by $\frac{1}{2}$
23. A cylindrical block of certain material has a resistance R as measured between its circular faces. To half the resistance, all the dimensions of the block must be
- Doubled
 - Halved
 - Decreased by $\sqrt{2\pi}$
 - Increased by $\sqrt{2\pi}$
24. The time rate of change of a current passed through a 1mH inductor is 2 mA/s . This means that the voltage across the inductor is.
- $0.5 \times 10^{-6}\text{ V}$
 - 0.5 V
 - $2 \times 10^{-6}\text{ V}$
 - 2 V

25. For the circuit shown in figure

- The current depends on the resistor
- The Voltage across the current source depends on the resistor.
- The current depends on the voltage source
- If the resistor were zero, the current would tend to infinity.

26. The approximate equivalent resistance at the points x_1 and x_2 in the circuit shown below



- $60\text{ }\Omega$
- $40\text{ }\Omega$
- $80\text{ }\Omega$
- $20\text{ }\Omega$

27. Two identical resistive loads consumes W watts each when connected in parallel across an ideal current source of I amperes. If, instead, they were connected in series with the same source, their total consumption
- Would half
 - Would double
 - Would remain the same
 - Would increase by a factor of 4
28. In a three-phase delta-connected balanced load
- Line current is equal to the phase current
 - Line current is three times the phase current
 - Line current is $\sqrt{3}$ times the phase current
 - Line current is the sum of the three phases current
29. Which of the following statement is true?
- Thevenin reduction can be used only if there are no current sources
 - In ac circuits, KCL holds only for average current and not for instantaneous currents.
 - Capacitors are generally less lossy than inductors
 - Linear networks can have dependent sources.
30. Two lights bulb of 40W and 80W are connected in series. Which one of the following statement is false?
- The current drawn is lesser than what either bulb would draw alone
 - The voltage across a 80W bulb is lesser than that across the 40W bulb.
 - The power dissipated by the 80W bulb is lesser than that by the 40W bulb.
 - The current drawn is the average of what of either bulb would draw alone
31. A house served by a 220V supply light and is protected by a 9 Ampere fuse. The maximum number of 60W bulbs in parallel that can be turned on is
- 11
 - 33
 - 22
 - 44
32. The secondary coil of an ideal 2:1 transformer has a 1F capacitor connected across its terminals. The referred impedance on the primary side is of an element
- $L = 4H$
 - $C = 0.25 F$
 - $L = 0.25 H$
 - $C = 4F$
33. A parallel combination of N resistances is connected an ideal current source of I Amperes. The expression of the current in the k^{th} resistor R_k is
- $\left(\frac{R_k}{R_1 + R_2 + \dots + R_N} \right) I$
 - $\left(\frac{\frac{1}{R_k}}{\frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_N}} \right) I$
 - $\left(\frac{R_k}{\frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_N}} \right) I$
 - $\left(\frac{1}{\frac{R_k}{R_1 + R_2 + \dots + R_N}} \right) I$
34. Consider two metallic wires W_1 and W_2 they are made up of same material and each has a circular cross-section. The diameter of W_2 is twice that of W_1 and the length of W_2 is four times that of W_1 . Which one of the following statement is TRUE?
- Resistance of W_1 is half that of W_2
 - Resistance of W_1 is equal to that of W_2
 - Resistance of W_1 is twice that of W_2
 - Resistance of W_1 is eight times that of W_2
35. Consider the following statements.
- All the reciprocal networks are always symmetrical
 - All the passive networks are always reciprocal
 - All the non-linear networks are always non-reciprocal
- Which of the above statements are TRUE.
- 1 and 2
 - 2 and 3
 - 3 and 1
 - 1, 2 and 3

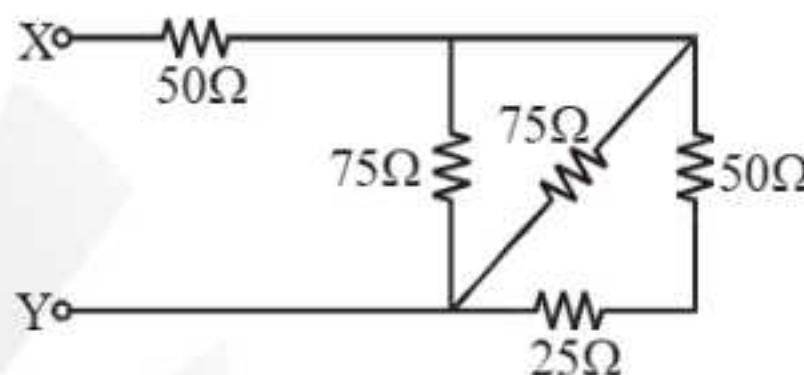
36. The resistance of a parallel circuit consisting of two resistors is 12Ω . One of the resistance wires breaks and the effective resistance becomes 18Ω . The resistance of the broken wire is
 (a) 48Ω (b) 18Ω
 (c) 36Ω (d) 24Ω

37. The approximate equivalent resistance between terminals A and B for the following infinite ladder network comprising of 1Ω and 2Ω resistors is

- (a) 1Ω (b) 2Ω
 (c) 4Ω (d) 0.5Ω

38. A practical current source is usually represented by
 (a) A resistance in series with an ideal current source
 (b) A resistance in parallel with an ideal current source
 (c) A resistance in parallel with an ideal voltage source
 (d) None of the above

39. Two bulbs marked 200 watt, 250 volts and 100 watt, 250 volts are joined in series to 250 volts supply. Power consumed in circuits is
 (a) 33 Watt (b) 67 Watt
 (c) 100 Watt (d) 300 Watt


40. Two resistance R_1 and R_2 give combined resistance of 4.5Ω when in series and 1Ω when in parallel. The resistances R_1 and R_2 are respectively.
 (a) 3 ohms and 6 ohms
 (b) 3 ohms and 9 ohms
 (c) 1.5 ohms and 3 ohms
 (d) 1.5 ohms and 0.5 ohms

41. Which of the following bulbs will have the least resistance?
 (a) 220V, 60W (b) 220V, 100W

- (c) 115V, 60W (d) 115V, 100W
 42. A resistance of 5 ohms is further drawn so that its length becomes double. Its resistance will now be.

- (a) 5 ohms (b) 7.5 ohms
 (c) 10 ohms (d) 20 ohms

43. Equivalent resistance between X and Y is

- (a) 75Ω (b) 50Ω
 (c) 275Ω (d) None of above

44. Three equal resistors, connected in series across a source of emf, dissipated 10W of power. What would be the power dissipated in the same resistor when they are connected in parallel across the same source?

- (a) 10W (b) 30W
 (c) 90W (d) 270W

[DMRC JE - 2016]

45. A 10Ω resistor is connected in parallel with a 15Ω resistor and the combination in series with a 12Ω resistor. The equivalent resistance of the circuit is:
 (a) 37Ω (b) 27Ω
 (c) 18Ω (d) None of these

[DMRC JE - 2016]

46. The energy used by a 1.5kW heater in 5 minutes is:
 (a) 450 000 J (b) 450 J
 (c) 7500 J (d) None of these

[DMRC JE - 2016]

47. What is called the Electro-Motive Force (EMF) of a voltage source?
- Terminal voltage when load is applied
 - Internal voltage when no load is applied
 - Product of internal resistance and load current
 - Electric pressure provided to the load
- [DMRC JE - 2016]
48. One coulomb of electrical charge is contributed by how many electrons?
- 0.625×10^{19}
 - 1.6×10^{19}
 - 10^{19}
 - None of these
- [DMRC JE - 2016]
49. Three equal resistors each equal to R ohm are connected as shown in fig. The equivalent resistance between points A and B is:
-
- (a) R (b) $3R$
 (c) $R/3$ (d) $2R/3$
- [DMRC JE - 2016]
50. Two resistors R_1 and R_2 give combined resistance of 6 ohm when in series and 0.83 ohm when in parallel. The resistances R_1 and R_2 are respectively
- 3 ohm and 3 ohm
 - 4 ohm and 2 ohm
 - 5 ohm and 1 ohm
 - 4.5 ohm and 1.5 ohm
51. A wire having resistance R_1 is stretched to double its length. The new resistance R_2 is :
- R_L
 - $2R_1$
 - $4R_1$
 - $\frac{R_1}{2}$
52. How many coulombs of charge move through a filament of a light bulb in 1.3 s If there is 8 A of current through the filament?
- 9.3
 - 10.4
 - 6.15
 - None of these
53. What is the current, in amperes, when 0.95 coulombs pass a point in 5 s?
- 1.00
 - 0.19
 - 4.75
 - None of these
54. It was found that the current was 60 mA when a circuit with a particular resistance is connected to a 20 V battery. The current has dropped to 30 mA after sometime. How much has the voltage changed?
- 10V
 - 20V
 - 0V
 - None of these
55. What is the power consumed by the circuit when a bulb of 60 watts and another of 120 watts are joined in a series?
- 180 W
 - 40W
 - 120 W
 - None of these
56. What is the resistance of a 440 cm long wire of 0.28 cm diameter, with specific resistance 0.56 ohm-cm?
- 900 Ω
 - 90 Ω
 - 9 Ω
 - None of these
57. Three resistors of equal resistance connected in series across a power source together dissipate 15 watts of power. What would be the power dissipated when the same resistors are connected in parallel?
- 150W
 - 100W
 - 135W
 - None of these
58. Which of the following is the unit for measuring specific resistance of a material?
- Ohm-meter
 - Ohm
 - Siemens
 - Ohm/meter

59. It is desired to have a total resistance of 7Ω . There are 3 resistances of values 3Ω , 12Ω and 6Ω available. What will be the combination of these three resistances in order to achieve the required objective of 7Ω ?
- (a) All the three in series
(b) 3Ω in series with the parallel combination of 12Ω and 6Ω
(c) 6Ω in series with the parallel combination of 12Ω and 3Ω .
(d) None of these
60. There are 3 registers in parallel in a circuit. What happens to the total resistance if one of them is removed?
- (a) Total resistance decreases
(b) Total resistance increases
(c) Total resistance will not change
(d) Total resistance will decrease by one-third
61. There are five parallel resistors and a total of 600 mA of current into these resistors. The currents through four of the resistors are 30 mA, 60 mA, 70 mA and 100 mA. What is the current through the fifth resistor?
- (a) 260 mA (b) 340 mA
(c) 600 mA (d) None of these
62. Consider a circuit having four parallel branches with a power dissipation of 1.6 W in each. What is the total power dissipation?
- (a) 1.6 W (b) 6.4W
(c) 0.4W (d) None of these
63. If two light bulbs that are parallel-connected dissipate 60 watts and 100 watts of power, then what is the total power loss?
- (a) 160 W (b) 80 W
(c) 40W (d) None of these
64. The total resistance of circuit with two resistors connected parallel is 6 ohms. What are the individual values of these two parallel resistors when one has 50% more resistance than the resistance of the other?
- (a) 10 ohms and 15 ohms
(b) 16 ohms and 24 ohms
(c) 6 ohms and 9 ohms
(d) None of these
65. Which of the following can be a use of a parallel circuit?
- (a) Voltage
(b) Current
(c) Magnetic flux
(d) None of these
66. Which of the following can be used to measure the strength of a battery?
- (a) Henry (b) Tesla
(c) Volt (d) None of these
67. What is Electrical impedance?
- (a) It is the measure of the opposition that a circuit presents to a current when a resistance is added or removed
(b) It is the measure of the opposition that a circuit presents to a current when there is a change in the cycles.
(c) It is the measure of the opposition that a circuit presents to a current when a voltage is applied
(d) None of these.
68. What is the peak-to-peak value when the peak of a sine wave is 13 V?
- (a) 26 V (b) 13 V
(c) 260V (d) None of these

69. What is the equivalent negative angle of 30° positive angle?

- (a) -30° (b) -330°
(c) 3000 (d) None of these

70. What is the rating of a particular source if it is capable of supplying 8 A for 6 hours?

- (a) 1.33 Ah (b) 48 Ah
(c) 0.75 Ah (d) None of these

71. If an oven consumes 500 watts for 25 hours, then the total energy used is

- (a) 12.5 kWh (b) 12500 kWh
(c) 12500 mWh (d) None of these

72. A server uses 350 W and is allowed to run continuously for 30 days. What is the amount of kilowatt hours of energy is consumed?

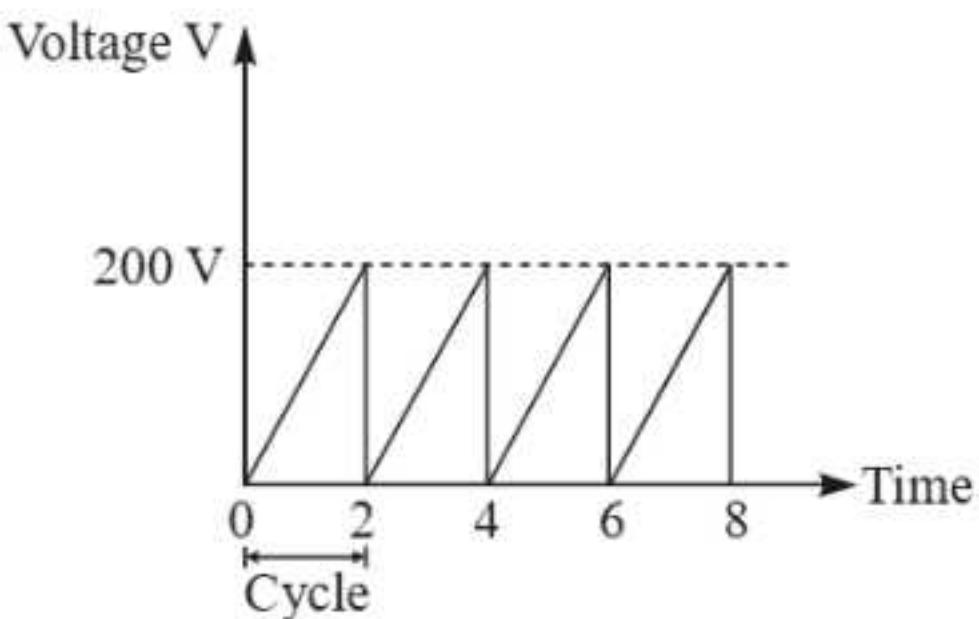
- (a) 252,000 kWh (b) 252 kWh
(c) 0.252 kWh (d) None of these

73. In purely resistive circuits, the _____ and the _____ applied are _____ phase with each other.

- (a) Current, voltage, out of
(b) Frequency, voltage, in
(c) Frequency, voltage, out of
(d) Current, voltage, in

[UPPCL JE - 2014]

74. Following data is known about a resultant current wave which is made-up of two components:


1. A direct current of 10A
2. A sinusoidal alternating current of 50 Hz with a peak value of 10 A.

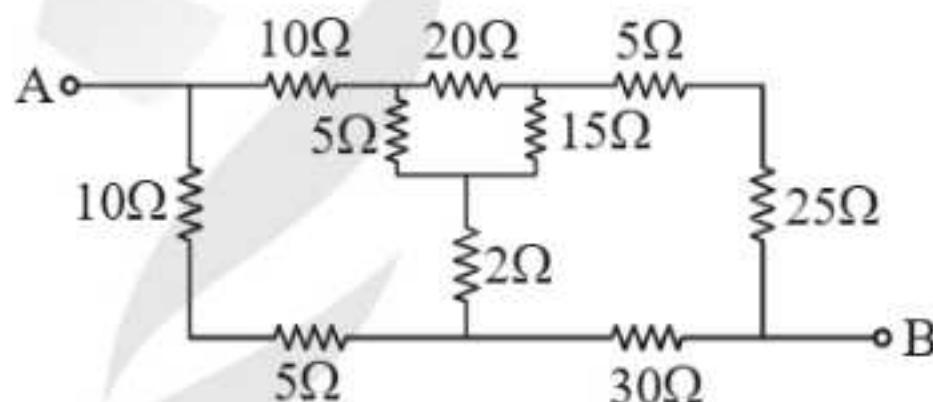
Calculate the r.m.s. value of the resultant wave.

- (a) 24.12 A (b) 12.24 A
(c) 1.24 A (d) 2.14 A

[UPPCL JE - 2014]

75. What will be the average value of the sawtooth waveform shown below?

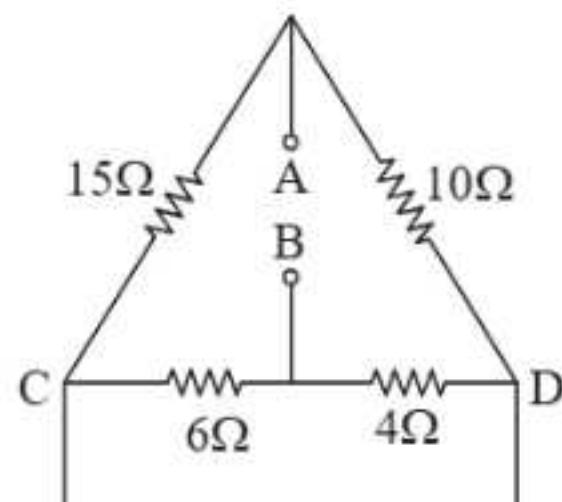
- (a) 150 V (b) 100 V
(c) 200 V (d) 250 V


[UPPCL JE - 2014]

76. It is known that two 2Ω , 2W resistors are connected in parallel. Find the combined resistance and wattage rating.

- (a) 2Ω , 4W (b) 1Ω , 4W
(c) 1Ω , 2W (d) 2Ω , 2W

[UPPCL JE - 2014]


77. Consider the following circuit and determine the equivalent resistance between A and B.

- (a) 15.76 Ω (b) 1.63 Ω
(c) 23.52 Ω (d) 2.04 Ω

[UPPCL JE - 2014]

78. In the following circuit, determine the equivalent resistance between points A and B.

- (a) 8.4 Ω (b) 4 Ω
(c) 2.5 Ω (d) 6.8 Ω

[UPPCL JE - 2014]

ANSWERS AND EXPLANATIONS

1. *Ans. (a)*

$$R_1 = \frac{R_{ac} \times R_{ab}}{R_{ab} + R_{bc} + R_{ca}}$$

$$= \frac{15 \times 5}{15 + 5 + 30}$$

$$R_1 = \frac{75}{50} = 1.5\Omega$$

$$R_2 = \frac{150}{50} = 3\Omega$$

and

$$R_3 = \frac{450}{50} = 9\Omega$$

2. *Ans. (d)*3. *Ans. (d)*

$$L \propto N^2$$

$$\therefore N = 2000 \sqrt{\frac{5}{3}} = 2582$$

Added number of turns = 582

4. *Ans. (b)*

(b - n + 1) links associated with fundamental loops.

So, b - n + 1 = 10 - 7 + 1 = 4.

5. *Ans. (c)*For maximum $i(t)$

$$\frac{di(t)}{dt} = 0 = e^{-\alpha t} (1 - \alpha t) = 0$$

$$\Rightarrow t = \frac{1}{\alpha}$$

6. *Ans. (c)*

Using Y-Δ conversion

$$R_{eff} = \frac{\frac{3}{4}R \times \frac{3}{2}R}{\frac{3}{4}R + \frac{3}{2}R} = \frac{R}{2}$$

7. *Ans. (c)*8. *Ans. (a)*9. *Ans. (d)*10. *Ans. (a)*11. *Ans. (c)*12. *Ans. (a)*13. *Ans. (b)*14. *Ans. (a)*

Total power in parallel circuit

$$= 40 + 40 = 80 \text{ W}$$

15. *Ans. (d)*16. *Ans. (b)*17. *Ans. (c)*18. *Ans. (a)*19. *Ans. (d)*20. *Ans. (b)*21. *Ans. (c)*22. *Ans. (a)*23. *Ans. (a)*24. *Ans. (c)*25. *Ans. (b)*26. *Ans. (b)*27. *Ans. (d)*28. *Ans. (c)*29. *Ans. (d)*30. *Ans. (d)*31. *Ans. (b)*32. *Ans. (b)*33. *Ans. (b)*34. *Ans. (b)*35. *Ans. (b)*36. *Ans. (c)*37. *Ans. (b)*38. *Ans. (b)*39. *Ans. (b)*40. *Ans. (c)*41. *Ans. (d)*

42. Ans. (d)

43. Ans. (a)

44. Ans. (c)

$$P_{\text{series}} = \frac{V^2}{3R} = 10 \text{ W}$$

$$= \frac{V^2}{R} = 30 \text{ W}$$

$$P_{\text{parallel}} = \frac{3V^2}{R}$$

$$= 3 \times 30 = 90 \text{ W}$$

45. Ans. (c)

$$R_{\text{eq1}} = \frac{10 \times 15}{10 + 15} = 6 \Omega$$

$$R_{\text{eq}} = 12 + 6 \Omega = 18 \Omega$$

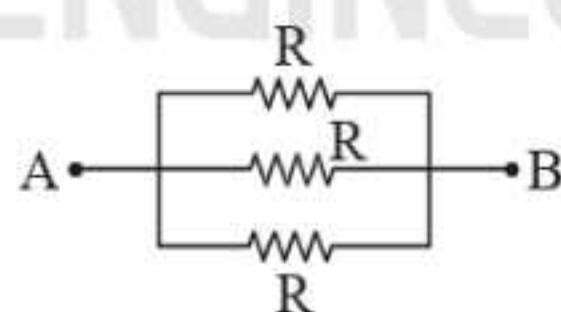
46. Ans. (a)

$$1 \text{ kWh} = 36 \times 10^5 \text{ Joule}$$

$$\text{Total kWh} = 1.5 \times \frac{5}{60}$$

$$= 0.125$$

$$\text{Joule} = 0.125 \times 36 \times 10^5$$


$$\text{Energy} = 450000 \text{ J}$$

47. Ans. (b)

48. Ans. (a)

49. Ans. (c)

Redraw the circuit

$$R_{\text{eq}} = R \parallel R \parallel R$$

$$= \frac{R}{3}$$

50. Ans. (c)

$$R_{\text{series}} = R_1 + R_2$$

$$= 5 + 1 = 6 \Omega$$

$$R_{\text{parallel}} = \frac{R_1 R_2}{R_1 + R_2}$$

$$= \frac{5 \times 1}{5 + 1} = 0.83$$

51. Ans. (c)

$$R = \frac{\rho l}{a}; R_1 = \rho \frac{(2l)}{(a/2)}$$

$$R_1 = 4R$$

52. Ans. (b)

$$\frac{dQ}{dt} = 8 \text{ A}$$

$$dQ = 8 \times 1.3$$

$$dQ = 10.4 \text{ coulombs}$$

53. Ans. (b)

$$I = \frac{dQ}{dt}$$

$$I = \frac{0.95}{5} = 0.19 \text{ A}$$

54. Ans. (a)

$$R = \frac{V}{I}$$

$$= \frac{20}{60} \times 10^3$$

$$= 333.33 \Omega$$

$$V = IR$$

$$= 30 \times 10^{-3} \times \frac{20}{60} \times 10^3$$

$$= 10 \text{ V}$$

55. Ans. (b)

$$P = \frac{P_1 \times P_2}{P_1 + P_2}$$

$$= \frac{60 \times 120}{180}$$

$$= 40 \text{ W}$$

56. *Ans. (d)*Given $\rho = 0.56 \text{ ohm-em}$ $l = 440 \text{ cm}$

$$a = \frac{\pi \times 0.28 \times 0.28 \text{ cm}^2}{4}$$

$$\text{Resistance } R = \frac{\rho l}{a}$$

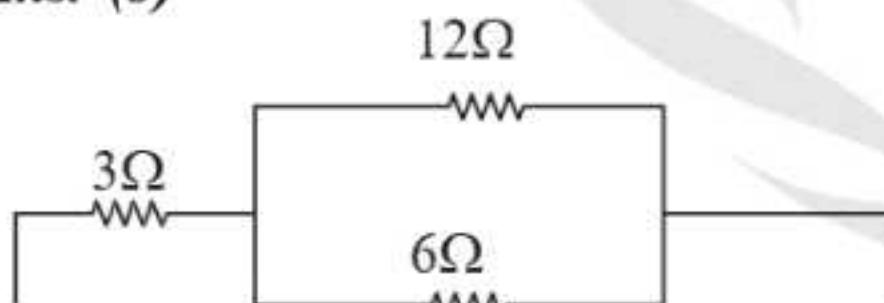
$$= \frac{0.56 \times 440}{(\pi \times 0.28 \times 0.28)}$$

4

$$\Rightarrow R = 4000 \Omega$$

57. *Ans. (c)*

Connected in series


$$\Rightarrow \frac{V^2}{3R} = 15$$

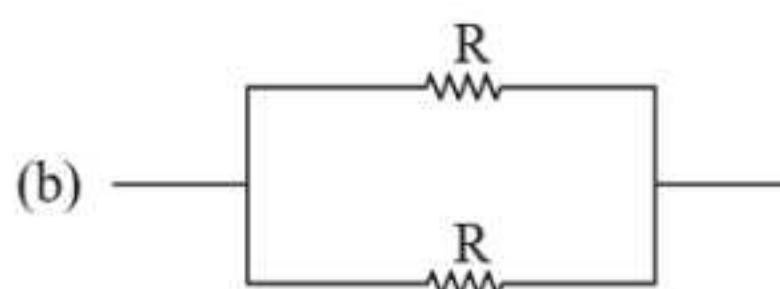
$$\frac{V^2}{R} = 45$$

Connected in parallel

$$\frac{3V^2}{R} = 3 \times 45$$


$$= 135 \text{ W}$$

58. *Ans. (a)*59. *Ans. (b)*


$$R_{eq} = 3 + (6 \parallel 12)$$

$$= 3 + \frac{6 \times 12}{12 + 6}$$

$$R_{eq} = 7\Omega$$

60. *Ans. (b)*

$$R_a = R \parallel R \parallel R = R/3$$

$$R_b = R \parallel R = R/2$$

$$\Rightarrow R_b > R_a$$

61. *Ans. (b)*

$$I_T = I_1 + I_2 + I_3 + I_4 + I_5$$

$$I_5 = 600 - 260 = 340 \text{ mA}$$

62. *Ans. (b)*

Power is additive in any configuration of resistive circuit

$$P_T = 1.6 + 1.6 + 1.6 + 1.6$$

$$= 6.4 \text{ W}$$

63. *Ans. (a)*

$$\text{Total Power Loss} = 100 + 60 = 160 \text{ W}$$

64. *Ans. (a)*

Let the two resistors are R and 1.5 R

$$\frac{R \times 1.5R}{2.5R} = 6$$

$$R = 10 \Omega$$

$$\text{Second resistor is } 1.5 \times 10 = 15 \Omega$$

65. *Ans. (a)*66. *Ans. (c)*67. *Ans. (c)*68. *Ans. (a)*

$$V_{pp} = 2V_{max}$$

$$= 2 \times 13V = 26V$$

69. *Ans. (b)*70. *Ans. (b)*

$$\text{Rating in Amp-hour} = 8A \times 6h = 48 \text{ Ah}$$

71. *Ans. (a)*

$$\text{kWh} = 500 \times 25 \times 10^{-3}$$

$$= 12.5 \text{ kW}$$

72. *Ans. (b)*

$$\text{kWh} = 350 \times 30 \times 24$$

$$= 252 \text{ kWh}$$